# Medium presentation

4 slides 2 examples



### REDUCTION of NOISE and VIBRATIONS in BUSES



### **The Industrial Problem**

The firm Castrosua was interested in reducing noise inside the passengers' cabin, and minimizing the vibrations supported by the structure of their vehicles.

Company

### **Mathematical Engineering**



To tackle problems relating to the simulation of devices and industrial processes, from mathematical modeling to the development of software packages.

**Carrocera Castrosua** 



Dedicated to build bus bodies. Aims, among other things, to improve vehicle comfort and reliability.



# REDUCTION of NOISE and VIBRATIONS in BUSES

#### **Challenges & Goals**

- To increase the comfort and reliability of passengers in buses.
- To evaluate vibro-acoustic properties in new vehicles.
- To reduce noise inside the passengers' cabin.
- To minimize vibrations supported by the structure of their vehicles.
- To reduce costs in resources, and in time.





Geometry (left) and mesh (above) of the bus structure







## REDUCTION of NOISE and VIBRATIONS in BUSES



### Mathematical and computational methods and techniques applied

- Mathematical modelling of the vehicle, both passenger cabin, and beams and plates structure.
- Finite element methods to obtain an approximate solution of both the sound pressure in the passenger cabin and the displacements in the structure.
- Numerical simulations aimed to assess the effectiveness of a variety of geometric configurations, different materials, etc.



Numerical simulation of the fluid pressure at a frequency of 500 Hz



Numerical simulation of the fluid pressure at a frequency of 500 Hz after applying passive coatings



# REDUCTION of NOISE and VIBRATIONS in BUSES



### **Results & Benefits to the company**

- Different acoustic solutions based on passive coatings of absorbent materials.
- Variety of geometric configurations.
- A new vehicle configuration with new materials and a distribution of patches of absorbent multilayer materials.



The company has a calculation methodology to predict, lesign and optimize the acoustic behavior of their vehicles





### PREDICTION of POLLUTION EPISODES at a POWER PLANT



#### **The Industrial Problem**

As Pontes power plant was interested in controlling the environmental consequences of their power plant by predicting a contamination event around the power plant.

Company

### **Optimization Modelling, Decision, Statistics and Applications**





### Endesa Generación



Endesa is an energy sector operator and provider of associated services, focused on electricity.



# PREDICTION of POLLUTION EPISODES at a POWER PLANT

#### **Challenges & Goals**

- To prevent pollution episodes and subsequent ecological fines.
- To reduce the emission of gases to the atmosphere.
- To control the inmission or deposition at ground level of the chemical compounds.
- To generate automatic predictions in short periods of time.
- To design predictors for continuous, binary and space-like response.













### Mathematical and computational methods and techniques applied

- Methods for predicting using semiparametric time series.
- Prediction methods with binary response based on generalized linear models (GLM).
- Prediction methods with multidimensional response and cointegration.
- Methods for predicting using spatial tecniques.
- Prediction methods based on neural networks.
- Prediction methods with functional data (FDA).



Spatial prediction of SO<sub>2</sub> concentration levels in thermal power stations



## PREDICTION of POLLUTION EPISODES at a POWER PLANT



#### **Results & Benefits to the company**

- SIPEI, a developed computer program, produces predictions of gases levels half an hour before they are thrown to the environment.
- 25 years of a successful collaboration between the Department of Statistics and Operations Research of the University of Santiago de Compostela and As Pontes power plant on environmental modeling and control.
- Staff and researchers formation: 6 thesis, more than 20 publications in high impact journals.



#### SIPEI, main window

The company has a computer program to predict a contamination event adapted to current legislation

